- Главная
- Об отделе
- Структура
- Лаборатория акусто- и электрооптики
- Лаборатория гидродинамики дисперсных систем
- Лаборатория ионно-кластерных технологий
- Лаборатория конверсионных технологий
- Лаборатория молекулярной кинетики
- Лаборатория низкотемпературной плазмы
- Лаборатория синтеза функциональных материалов
- Лаборатория редкоземельных материалов
- Лаборатория теплообмена и топливной энергетики
- Центр коллективного пользования
- Персоналии
- Оборудование
- ЛЭМПУС - 1
- ЛЭМПУС - 2
- КЛИУС
- Плазмохимический стенд
- Гидродинамический стенд
- Хромато-масс-спектрометр
- ЦХРС
- Гелиевый течеискатель MSE - 2000A
- Эксимерный лазер Coherent COMPexPro 50
- Атомно-адсорбционный спектрометр
- Атомно-эмиссионный спектрометр
- ИК-Фурье спектрометр
- Планетарная мельница серии
- Рентген-флюоресцентный энергодисперсионный спектрометр
- Система точной ионной полировки (PIPS) GATAN Model 691
- Универсальный Газовый анализатор UGA-200
- Хроматограф газовый Agilent 7890A CG
- Электронный микроскоп ТМ-1000
- Микровизор μVizo®-101
- Атомно-силовой микроскоп
- Установка роста кристаллов методом управляемого теплового потока
- Установка роста кристаллов низкоградиентным методом
- Установка поликристаллического синтеза
- Микросайзер-201А
- Ocean Optics USB4000-XR1-ES
- SteREO Discovery.V20
- Изостатический пресс AIP6-30H
- Партнеры
- Элементы установок
- Публикации
- Гранты и проекты
- Контакты
- Выставки
- Участие в конференциях
Может ли звук передаваться через вакуум?
11/11/2010 KV
Может ли звук передаваться через вакуум? |
Звуковая волна — это синхронное колебание атомов вещества относительно положения равновесия. Для распространения звука, очевидно, нужна материальная среда, поддерживающая эти колебания. В вакууме звук распространяться не может просто потому, что ее там нет. Однако, как выяснилось совсем недавно, звуковые колебания могут перескакивать из одного тела в другое через вакуумный зазор субмикронной толщины. Этот эффект, получивший название «вакуумное туннелирование фононов», был описан сразу в двух статьях, опубликованных в последних выпусках журнала Physical Review Letters. Сразу отметим, что, поскольку колебания кристаллической решетки переносят не только звук, но и тепло, новый эффект приводит также к аномально сильной теплопередаче через вакуум. Новый эффект работает за счет взаимодействия между звуковыми волнами в кристалле и электрическим полем. Колебания кристаллической решетки, добегая до торца одного кристалла, создают вблизи его поверхности переменные электрические поля. Эти поля «чувствуются» на другом краю вакуумного зазора и раскачивают колебания решетки во втором кристалле (см. рис. 1). В целом это выглядит так, словно отдельный фонон — «квант» колебания кристаллической решетки — перескакивает из одного кристалла в другой и распространяется в нём дальше, хотя в пространстве между кристаллами никакого фонона, конечно, нет.
Авторы открытия использовали для описания эффекта слово «туннелирование», поскольку он очень похож на туннелирование квантовых частиц, когда они перескакивают через энергетически Конкретный механизм, приводящей к столь эффективной связи между колебанием кристалла и электрическими полями, может быть разный. В теоретической статьефинских исследователей предлагается для этой цели использовать пьезоэлектрики — вещества, которые электризуются при деформации и деформируются в электрическом поле. Самого по себе этого еще недостаточно: для эффективного перескока фононов через вакуумный зазор необходимо организовать резонанс между «набегающими» фононами, переменными электрическими полями и «убегающими» фононами в другом кристалле. Вычисления показывают, что при реалистичных параметрах веществ такой резонанс действительно существует, так что при определенных углах падения фононы могут туннелировать с вероятностью вплоть до 100%.
В другой работе физики наткнулись на обсуждаемый эффект, изучая, казалось бы, совершенно технический вопрос: какой температурой обладает самый кончик теплой иглы сканирующего туннельного микроскопа, если ее поднести (без касания) к холодной подложке (см. рис. 2)? С помощью тонких экспериментальных методов они смогли измерить температуру буквально самого последнего атома на острие иглы и обнаружили поразительный факт: этот атом находится при температуре подложки, а не иглы! Это означает, что бесконтактный теплообмен самого последнего атома острия с подложкой шел (через вакуум!) намного сильнее, чем с остальной частью острия. Обычного теплового излучения, мысль о котором первым делом приходит в голову в таких ситуациях, оказалось совершенно недостаточно. По оценкам исследователей, теплопередача от иглы к подложке была в миллиарды (!) раз более эффективной, чем то, что смогло бы дать тепловое излучение. Этот факт, вкупе с результатами детальных измерений, свидетельствует о том, что и тут имеет место туннелирование фононов через вакуум. Авторы статьи объясняют динамику этого эффекта так. Любой заряд, поднесенный к металлической поверхности, наводит на ней заряд (в задачах по электростатике его часто моделируют фиктивным зарядом-изображением). Если исходный заряд дрожит, например, за счет тепловых колебаний, то и наведенный заряд тоже будет дрожать примерно с той же частотой и амплитудой (из-за того что электроны намного легче атомов, они успевают «подстроиться» под каждое движение атома). В результате получается, что прямо на поверхности подложки возникает некий электронный сгусток, который дрожит, словно «горячий» атом. Этот сгусток раскачивает колебания атомов на подложке, на них тратится энергия, она отбирается у электронного сгустка, а значит, и у исходно горячего атома — ведь он «жестко» связан со сгустком электрическими силами! Именно за счет этого механизма самый последний атом на острие умудряется сильно остыть, даже если остальная часть иглы теплая. По-видимому, для прикладных задач новый эффект будет интересен именно с точки зрения теплопередачи, которая в определенных ситуациях может идти намного эффективнее, чем считалось ранее. Это наблюдение будет очень важным при проектировании микромеханических устройств и при изучении теплопроводности поликристаллических образцов пьезоэлектриков. Кроме того, в микроустройствах, совмещающих пьезоэлектрические и металлические компоненты, в игру могут включиться и электроны. Все открывающиеся при этом перспективы для быстрой передачи энергии между электронами и фононами из одного вещества в другое через вакуум еще только предстоит изучить. |
»
- Войдите на сайт для отправки комментариев