- Главная
- Об отделе
- Структура
- Лаборатория акусто- и электрооптики
- Лаборатория гидродинамики дисперсных систем
- Лаборатория ионно-кластерных технологий
- Лаборатория конверсионных технологий
- Лаборатория молекулярной кинетики
- Лаборатория низкотемпературной плазмы
- Лаборатория синтеза функциональных материалов
- Лаборатория редкоземельных материалов
- Лаборатория теплообмена и топливной энергетики
- Центр коллективного пользования
- Персоналии
- Оборудование
- ЛЭМПУС - 1
- ЛЭМПУС - 2
- КЛИУС
- Плазмохимический стенд
- Гидродинамический стенд
- Хромато-масс-спектрометр
- ЦХРС
- Гелиевый течеискатель MSE - 2000A
- Эксимерный лазер Coherent COMPexPro 50
- Атомно-адсорбционный спектрометр
- Атомно-эмиссионный спектрометр
- ИК-Фурье спектрометр
- Планетарная мельница серии
- Рентген-флюоресцентный энергодисперсионный спектрометр
- Система точной ионной полировки (PIPS) GATAN Model 691
- Универсальный Газовый анализатор UGA-200
- Хроматограф газовый Agilent 7890A CG
- Электронный микроскоп ТМ-1000
- Микровизор μVizo®-101
- Атомно-силовой микроскоп
- Установка роста кристаллов методом управляемого теплового потока
- Установка роста кристаллов низкоградиентным методом
- Установка поликристаллического синтеза
- Микросайзер-201А
- Ocean Optics USB4000-XR1-ES
- SteREO Discovery.V20
- Изостатический пресс AIP6-30H
- Партнеры
- Элементы установок
- Публикации
- Гранты и проекты
- Контакты
- Выставки
- Участие в конференциях
Построены наноантенны для квантовых точек
07/11/2010 KV
Построены наноантенны для квантовых точек
По принципу действия новинка похожа на направленные телеантенны (на снимке) метрового диапазона, с той разницей, что работает в микрометровой области спектра (фото Enoch Lau). |
Физики из Каталонского института передовых исследований (ICREA) и института фотоники (ICFO) ухитрились приладить к микроскопическим объектам, излучающим свет, столь же крошечные антенны, подобные тем, что работают в радиолокации и телевидении.
Наноразмерные кристаллы — квантовые точки — могут стать основой для чувствительных датчиков, реагирующих люминесценцией на крошечные концентрации того или иного вещества. Проблема в том, что такой свет трудно уловить, поскольку он слаб, а исходит во всех направлениях.
Испанские учёные нашли способ обойти проблему, построив нановерсию антенны типа "волновой канал", или антенны Яги (Yagi-Uda antenna). Такие нередко можно встретить на крышах домов. Но если в классических антеннах Яги роль ключевых элементов — вибраторов — исполняют макроскопические проводники размером порядка метра, то в системе испанцев — это золотые стержни нанометрового размера, лежащие на стеклянной подложке.
Их удалось получить при помощи фотолитографии. Длина одной такой антенны Яги составляет 830 нанометров. Отдельные вибраторы длиной 145 нм в ней отделены зазорами в 175 нм. Главное же новшество в том, что, применив фотолитографию второй раз, авторы устройства сумели добавить к таким антеннам излучающие наночастицы.
|
Благодаря своему положению квантовая точка (красный шарик) оказывается "сцепленной" с ближним полем наноантенны Яги (ряд жёлтых брусков). Возникает плазмонный резонанс (синхронные колебания электронов на поверхности золотых наночастиц), который повышает эффективность системы и превращает "ненаправленную" квантовую точку в узконаправленный эмиттер (иллюстрация ICFO). |
Исследователи создали несколько наноантенн и показали, что, выбирая геометрические параметры, можно точно настраивать их на резонанс с излучением тех или иных квантовых точек, примерно так, как происходит настройка на телеканал. Кстати, как гласит пресс-релиз ICFO, команда испанских учёных предполагает, что их световые наноантенны будут так же хорошо работать и на приём.
Подробности опытов можно найти в статье в Science. (Читайте также о первых антеннах для видимого света, целом массиве наноантенн для инфракрасного излучения и опыте по проталкиванию светачерез кабель с поперечником меньше длины волны.
Источник: PhysicsWorld.com |
»
- Войдите на сайт для отправки комментариев